Robustness of spectro-temporal features against intrinsic and extrinsic variations in automatic speech recognition

نویسندگان

  • Bernd T. Meyer
  • Birger Kollmeier
چکیده

The effect of bio-inspired spectro-temporal processing for automatic speech recognition (ASR) is analyzed for two different tasks with focus on the robustness of spectro-temporal Gabor features in comparison to mel-frequency cepstral coefficients (MFCCs). Experiments aiming at extrinsic factors such as additive noise and changes of the transmission channel were carried out on a digit classification task (AURORA 2) for which spectro-temporal features were found to be more robust than the MFCC baseline against a wide range of noise sources. Intrinsic variations, i.e., changes in speaking rate, speaking effort and pitch, were analyzed on a phoneme recognition task with matched training and test conditions. The sensitivity of Gabor and MFCC features against various speaking styles was found to be different in a systematic way. An analysis based on phoneme confusions for both feature types suggests that spectro-temporal and purely spectral features carry complementary information. The usefulness of the combined information was demonstrated in a system using a combination of both types of features which yields a decrease in word-error rate of 16% compared to the best single-stream recognizer and 47% compared to an MFCC baseline. 2010 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectro-temporal modulation subspace-spanning filter bank features for robust automatic speech recognition.

In an attempt to increase the robustness of automatic speech recognition (ASR) systems, a feature extraction scheme is proposed that takes spectro-temporal modulation frequencies (MF) into account. This physiologically inspired approach uses a two-dimensional filter bank based on Gabor filters, which limits the redundant information between feature components, and also results in physically int...

متن کامل

Complementarity of MFCC, PLP and Gabor features in the presence of speech-intrinsic variabilities

In this study, the effect of speech-intrinsic variabilities such as speaking rate, effort and speaking style on automatic speech recognition (ASR) is investigated. We analyze the influence of such variabilities as well as extrinsic factors (i.e., additive noise) on the most common features in ASR (mel-frequency cepstral coefficients and perceptual linear prediction features) and spectro-tempora...

متن کامل

Human and automatic speech recognition in the presence of speech-intrinsic variations

Despite several decades of research, automatic speech recognition (ASR) lacks the performance achieved by human listeners. One of the major challenges in ASR is to cope with the immense variability of spoken language, which can be categorized into extrinsic sources (e.g., additive noise) and intrinsic factors (such as speaking rate, style, effort, dialect, and accent). What can we learn from th...

متن کامل

Spectro-temporal directional derivative features for automatic speech recognition

We introduce a novel spectro-temporal representation of speech by applying directional derivative filters to the Melspectrogram, with the aim of improving the robustness of automatic speech recognition. Previous studies have shown that two-dimensional wavelet functions, when tuned to appropriate spectral scales and temporal rates, are able to accurately capture the acoustic modulations of speec...

متن کامل

Phoneme Classification Using Temporal Tracking of Speech Clusters in Spectro-temporal Domain

This article presents a new feature extraction technique based on the temporal tracking of clusters in spectro-temporal features space. In the proposed method, auditory cortical outputs were clustered. The attributes of speech clusters were extracted as secondary features. However, the shape and position of speech clusters change during the time. The clusters temporally tracked and temporal tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Speech Communication

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2011